Part Number Hot Search : 
VW193 00M200V ON2522 FZ1200 25001 RTL8208 PDTC124 HEF4000
Product Description
Full Text Search
 

To Download IRFHM8235PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFHM8235PBF 1 www.irf.com ? 2013 international rectifier august 21, 2013 hexfet ? power mosfet base part number package type standard pack orderable part number ? ? form quantity IRFHM8235PBF pqfn 3.3 mm x 3.3 mm tape and reel 4000 irfhm8235trpbf v dss 25 v r ds(on) max (@ v gs = 10v) 7.7 ? (@ v gs = 4.5v) 13.4 qg (typical) 7.7 ? nc i d (@t c (bottom) = 25c) 25 ? a m ??? v gs max 20 v features benefits low thermal resistance to pcb (<4.1c/w) enable better thermal dissipation low profile (<1.05mm) increased power density industry-standard pin out results in multi-vendor compatibility compatible with existing surface mount techniques ?? easier manufacturing rohs compliant, halogen-free environmentally friendlier msl1, consumer qualification increased reliability notes ? through ? are on page 8 absolute maximum ratings ?? parameter max. units v gs gate-to-source voltage 20 v i d @ t a = 25c continuous drain current, v gs @ 10v 16 a i d @ t c(bottom) = 25c continuous drain current, v gs @ 10v 50 ?? i d @ t c(bottom) = 100c continuous drain current, v gs @ 10v 32 ?? i dm pulsed drain current ? 240? p d @t a = 25c power dissipation ? 3.0 w p d @t c(bottom) = 25c power dissipation ? 30 linear derating factor ? 0.024 w/c t j operating junction and -55 to + 150 c t stg storage temperature range i d @ t a = 70c continuous drain current, v gs @ 10v 13 i d @ t c = 25c continuous drain current, v gs @ 10v (source bonding technology limited) 25? applications ?? control mosfet for synchronous buck converter ? 3 2 1 8 7 6 5 4 d d d d s s s g top view pqfn 3.3x3.3 mm ? s g s s d d d d d
? IRFHM8235PBF 2 www.irf.com ? 2013 international rectifier august 21, 2013 thermal resistance ??? parameter typ. max. units r ? jc (bottom) junction-to-case ? ??? 4.1 r ? jc (top) junction-to-case ? ??? 42 r ? ja junction-to-ambient ? ??? 42 r ? ja (<10s) junction-to-ambient ? ??? 28 c/w avalanche characteristics parameter typ. max. units e as single pulse avalanche energy ? ??? 41 mj d s g static @ t j = 25c (unless otherwise specified) ???? parameter min. typ. max. units conditions bv dss drain-to-source breakdown voltage 25 ??? ??? v v gs = 0v, i d = 250a ? bv dss / ? t j breakdown voltage temp. coefficient ??? 19 ??? mv/c reference to 25c, i d = 1.0ma r ds(on) static drain-to-source on-resistance ??? 6.2 7.7 m ? v gs = 10v, i d = 20a ? ??? 10.3 13.4 v gs = 4.5v, i d = 16a ? v gs(th) gate threshold voltage 1.35 1.8 2.35 v v ds = v gs , i d = 25a ? v gs(th) gate threshold voltage coefficient ??? -5.9 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a v ds = 20v, v gs = 0v ??? ??? 150 v ds = 20v, v gs = 0v, t j = 125c i gss gate-to-source forward leakage ??? ??? 100 na v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v gfs forward transconductance 43 ??? ??? s v ds = 10v, i d = 20a q g total gate charge ??? 16 ??? nc v gs = 10v, v ds = 13v, i d = 20a q g total gate charge ??? 7.7 12 nc ? q gs1 pre-vth gate-to-source charge ??? 1.9 ??? v ds = 13v q gs2 post-vth gate-to-source charge ??? 1.3 ??? v gs = 4.5v q gd gate-to-drain charge ??? 2.7 ??? i d = 20a q godr gate charge overdrive ??? 1.5 ??? q sw switch charge (q gs2 + q gd ) ??? 4.0 ??? q oss output charge ??? 6.4 ??? nc v ds = 16v, v gs = 0v r g gate resistance ??? 1.6 ??? ? ? t d(on) turn-on delay time ??? 7.9 ??? ns ? v dd = 13v, v gs = 4.5v t r rise time ??? 16 ??? i d = 20a t d(off) turn-off delay time ??? 7.5 ??? r g =1.8 ? t f fall time ??? 5.2 ??? c iss input capacitance ??? 1040 ??? v gs = 0v c oss output capacitance ??? 300 ??? v ds = 10v c rss reverse transfer capacitance ??? 120 ??? ? = 1.0mhz pf ? diode characteristics parameter min. typ. max. units conditions i s continuous source current ??? ??? 25 ? a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 240 ? integral reverse (body diode) ? p-n junction diode. v sd diode forward voltage ??? ??? 1.0 v t j = 25c, i s = 20a, v gs = 0v ? t rr reverse recovery time ??? 10 15 ns t j = 25c, i f = 20a, v dd = 13v q rr reverse recovery charge ??? 4.9 7.4 nc di/dt = 300a/s ?
? IRFHM8235PBF 3 www.irf.com ? 2013 international rectifier august 21, 2013 fig 1. typical output characteristics fig 4. normalized on-resistance vs. temperature fig 5. typical capacitance vs. drain-to-source voltage fig 6. typical gate charge vs . gate-to-source voltage fig 3. typical transfer characteristics fig 2. typical output characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 7.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v ? 60s pulse width tj = 25c 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v ? 60s pulse width tj = 150c vgs top 10v 7.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 1.0 2.5 4.0 5.5 7.0 8.5 10.0 11.5 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 10v ? 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 20a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 02468101214161820 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v v ds = 5.0v i d = 20a
? IRFHM8235PBF 4 www.irf.com ? 2013 international rectifier august 21, 2013 fig 8. maximum safe operating area fig 11. maximum effective transient thermal impedance, junction-to-case fig 7. typical source-drain diode forward voltage fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.8 1.2 1.6 2.0 2.4 2.8 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 25a i d = 250a i d = 1.0ma i d = 1.0a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r ma l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 10msec 1msec operation in this area limited by r ds (on) 100sec dc limited by source bonding technology ? 25 50 75 100 125 150 t c , case temperature (c) 0 11 22 33 44 55 i d , d r a i n c u r r e n t ( a ) limited by source bonding technology ?
? IRFHM8235PBF 5 www.irf.com ? 2013 international rectifier august 21, 2013 fig 12. on-resistance vs. gate voltage fig 13. maximum avalanche energy vs. drain current fig 14. single avalanche event: pulse current vs. pulse width 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 4.0 8.0 12.0 16.0 20.0 24.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 20a t j = 25c t j = 125c 25 50 75 100 125 150 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 160 180 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.0a 8.6a bottom 20a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse)
? IRFHM8235PBF 6 www.irf.com ? 2013 international rectifier august 21, 2013 fig 15. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 18a. gate charge test circuit vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 18b. gate charge waveform fig 16a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as fig 16b. unclamped inductive waveforms fig 17a. switching time test circuit fig 17b. switching time waveforms
? IRFHM8235PBF 7 www.irf.com ? 2013 international rectifier august 21, 2013 the typical application topology for this product is the synchronous buck conver ter. these converters operate at high frequencies (typically around 400 khz). during turn-on and turn-off switching cycles, the high di/dt currents circulating in the parasitic elements of the circuit induce high voltage ringing which may exceed the device rating and lead to un- desirable effects. one of the major contributors to the incr ease in parasitics is the pcb power circuit inductance. this section introduces a simple guideline that mitigates the e ffect of these parasitics on the performance of the circuit and provides reliable operation of the devices. to reduce high frequency switching noise and the effects of electromagnetic interference (emi) when the control mosfet (q1) is turned on, the layout shown in figure 19 is recommended. the input bypass capacitors, control mosfet and output capacitors are placed in a tight loop to mi nimize parasitic inductance which in turn lowers the am- plitude of the switch node ringing, and minimizes exposure of the mosfets to repetitive avalanche conditions. when the synchronous mosfet (q2) is turned on, high av erage dc current flows through the path indicated in figure 19. therefore, the q2 turn- on path should be laid out with a tight loop and wi de traces at both ends of the inductor to minimize loop resistance. placement and layout guidelines
? IRFHM8235PBF 8 www.irf.com ? 2013 international rectifier august 21, 2013 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ pqfn 3.3mm x 3.3mm outline package details pqfn 3.3mm x 3.3mm outline part marking for more information on board mounting, including footprint and stencil recommendation, please refer to application note an-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf for more information on package inspection techniques, please refer to application note an-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf
? IRFHM8235PBF 9 www.irf.com ? 2013 international rectifier august 21, 2013 qualification information ? ? qualification level moisture sensitivity level pqfn 3.3mm x 3.3mm msl1 (per jedec j-std-020d ??? ) rohs compliant yes consumer ?? (per jedec jesd47f guidelines) ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ camber note: 1. dimension measured on the bottom of the cavity. 2. pitch tolerance over any 10 pitches = 0.008 [0.2] 3. esd requirement: 0200volts 4. surface resistivity = 10 to 10 ohms per square inch 5. roll should contain splice-free material 6. engrave resy symbol every 100 sprockets (about 15.75 [400] ( conform supplier specification) ps the camber shall not exceed in 1mm/250 pqfn 3.3mm x 3.3mm outline tape and reel ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability/ ?? higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales repres entative for further information: http://www.irf.com/whoto-call/salesrep/ ??? applicable version of jedec stan dard at the time of product release. notes: ? ? repetitive rating; pulse width limited by max. junction temperature. ? starting t j = 25c, l = 0.21mh, r g = 50 ? , i as = 20a. ? pulse width ? 400s; duty cycle ? 2%. ? r ? is measured at t j of approximately 90c. ? when mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of fr-4 material. please refer to an-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf ? calculated continuous current based on maxi mum allowable junction temperature. ? current is limited to 25a by source bonding technology. ? pulse drain current is limited to 100a by source bonding technology. note: for the most current drawing please refer to ir website at http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFHM8235PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X